PROBLEM

If
$$0 < x_1 < x_2 < x_3 < \pi$$
, then prove that $\sin\left(\frac{x_1 + x_2 + x_3}{3}\right)$
 $> \frac{\sin x_1 + \sin x_2 + \sin x_3}{3}$. Hence or otherwise prove that if A, B, C are angles of a triangle, then the maximum value of $\sin A + \sin B + \sin C$ is $\frac{3\sqrt{3}}{2}$.

SOLUTION

5. Let points A, B, C form a triangle. The y-coordinate of centroid $G \text{ is } \frac{\sin x_1 + \sin x_2 + \sin x_3}{3} \text{ and the y-coordinate of point } F \text{ is}$

$$\sin\left(\frac{x_1+x_2+x_3}{3}\right).$$

From the figure, FD > GD.

Hence,
$$\sin\left(\frac{x_1 + x_2 + x_3}{3}\right) > \frac{\sin x_1 + \sin x_2 + \sin x_3}{3}$$
.

If $A + B + C = \pi$, then

$$\sin\left(\frac{A+B+C}{3}\right) > \frac{\sin A + \sin B + \sin C}{3}$$

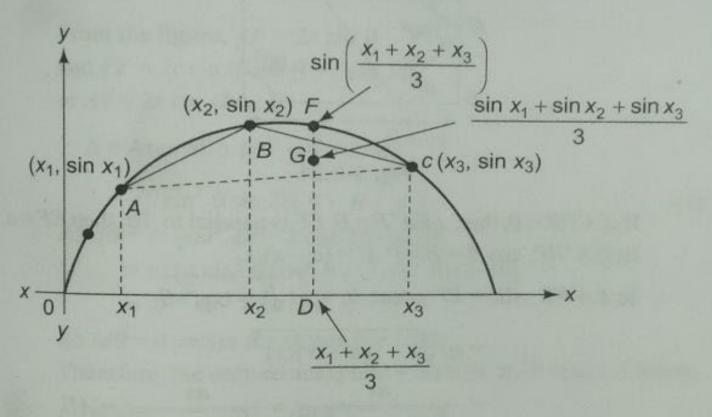


Fig. S-6.19

or
$$\sin \frac{\pi}{3} > \frac{\sin A + \sin B + \sin C}{3}$$

or $\frac{3\sqrt{3}}{2} > \sin A + \sin B + \sin C$
or maximum value of $(\sin A + \sin B + \sin C) = \frac{3\sqrt{3}}{2}$